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Abstract

In this paper, we investigate the good parallel computing properties of sparse-grid solL}non
techniques. To this end, an existing sequential computational fluid dynamics (CFD) codg for a
standard 3-D problem from computational aerodynamics is restructured into a parallel application.
The restructuring is organized according to a master/worker protocol. The coordinator ‘modules
developed thereby are implemented in the coordination language MANIFOLD and.z\re applicable to
other problems than the present CFD problem only. Performance re‘su‘lts are given for tmh the
sequential and the parallel versions of the code. The results are promising. The paper contributes
to the state-of-the-art in improving the efficiency of large-scale cqmputanpns. We al§o prcsgnt a
theoretical analysis of speed-up through parallelization in a multi-user single-machine environ-
ment. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the major challenges in science and technology is the‘ fgst f’ll'.tmett;t;i:le s;lu;lt:::g
of partial differential equations. Important e)‘camples of such equauqn;l lare e s o
mechanics. When partial differential equations are solvgd nudm;zncd g,ver :n nus be
e, L e o g(hlt; "h) isa? niexilb?:frsfu\z/];:ro: ii ise t::aespace dimensior; of
approximated by a set of - say - rea bers, W s e e e
tl?ff problem (alZ= 1, 2 or 3). Thus, tpe origmal differential figl;zzogs( ;rs)t;zz;tg; o4 o
a system of O(N“) algebraic equations with the aforemen

* Corresponding author. E-mail: kees.everaars@cwi.nl
' E-mail: barry.koren@cwi.nl

i i ights reserved.
0167-8191 /98 /$ - see front matter © 1998 Elsevier Science B.V. All rights reserv
PI: SO167-8191(98)00043-X




1082 K. Everaars, B. Koren / Parallel Computing 24 (1998) 10811106

the unknowns. For d = 3 the size of the system can be very large. To solve these large
systems, various techniques have been developed. Among these, the multigrid methods
are optimal in the sense that the amount of computational work to solve the algebraic
system is only linear with the number of unknowns. For all other known solution
methods, the amount of work grows faster than linearly with the number of unknowns.
For literature on multigrid techniques, see, e.g., Refs. [1-3], where Ref. [1] is recom-
mended for an elementary introduction.

Novel multigrid techniques to speed up the solution of systems of discrete equations
are the so-called sparse-grid techniques; see Ref. [4] and its references. Sparse-grid
techniques are very attractive from the viewpoint of computational efficiency, particu-
larly for 3-D problems. The gain in efficiency is achieved through a strong reduction of
the number of grid points. Of course, this goes at the expense of numerical accuracy.
Fortunately, the sparse-grid-of-grids approach has a better ratio of discrete accuracy over
number of grid points [S] than a standard multigrid method (which in turn already has a
much better performance in this sense than a single-grid method).

The efficiency of sparse-grid methods can still be improved further; an advantage of
the methods is their good suitability for implementation on a parallel computer or a
cluster of workstations. In this paper we present the parallel implementation of an
existing sparse-grid solution method for the steady, 3-D Euler equations of gas dynamics
[6,7]. Our starting point is a sequential Fortran 77 code describing this standard problem.
If, for instance, entire subroutines of this code can be plugged into a new parallel
structure, the resulting renovated software can take advantage of the improved perfor-
mance offered by modern parallel computing environments, without rethinking or
rewriting the bulk of the existing code [8]. The good parallel computing properties of
sparse-grid solution techniques allow us to perform such a coarse-grain restructuring.
The restructuring is organized according to a master/worker protocol and essentially
consists of picking out the computation subroutines in the original Fortran 77 code, and
glueing them together with coordination modules written in ManiFoLD. Hardly any
rewriting or changes to these subroutines is necessary: within the new structure, they
have the same input/output and calling sequence conventions as they had in the old
structure, and they still manipulate the same global data. The MANIFOLD glue modules
are separately compiled programs that have no knowledge of the computation performed
by the Fortran modules - they simply encapsulate the protocol necessary to coordinate
the cooperation of the computation modules running in a parallel computing environ-
ment. MANIFOLD is a coordination language developed at CWI (Centrum voor Wiskunde
en Informatica) in the Netherlands. It is very well suited for managing complex,
dynamically changing interconnections among sets of independent concurrent cooperat-
ing processes [9,10].

The rest of this paper is organized as follows. In Section 2, we introduce the discrete
equations under consideration. In Section 3, we describe the concept of sparse-grid
methods. For this, first standard multigrid methods are described. In Section 4, we
briefly describe the sequential implementation of the 3-D CFD code and pay attention to
its good parallel computing properties. Next, in Section 5 we show how we can
restructure this sequential 3-D software into a parallel code, using the coordination
language MANIFOLD. In Section 6, we give an analysis of the speed-up figures in a
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Fig. 1. View at ONERA-M6 wing (and at corresponding grid plane).

multi-user single-machine environment and show performance results for the test case of
a half-wing in transonic flight: the standard test case of the ONERA M6 wing (Fig. 1) at
a far-field Mach number of 0.84 and 3.06° angle of attack. Finally, the conclusion of the
paper is in Section 7.

2. Equations
2.1. Continuous equations

In this paper, we consider the flow of a perfect, di-atomic gas (air, e.g.) in three
dimensions (3-D). The unknown quantities that describe the gas flow are the gas
velocity components in the three coordinate directions, u, v and w; the gas density p;
and the gas pressure p. Neglecting friction forces, the gas flow is described by the
steady, 3-D Euler equations

af(q) N dg(q) N dh(q) —0 (1a)
dx dy dz -

in which ¢ is the so-called state vector

p
pu

qa=1|pvi, (lb)
pw
pe

with e the sum of internal and kinetic energy, satisfying the perfect-gas relation
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e=1/(y— 1%+ 3(u’ +v? +w?), and in which f(g), g(¢) and h(q) are the so-called
flux vectors

pu pv ow
pu’+p puu pwu
puv pu2+p pwu
d = = h = , ¢
Aa) puw | €0 pow (@=Lt (1)
p p p
pule+ — puvle+ — pwle+ —
p p p

2.2. Discretized equations

The above equations are too intricate to be integrated by pen and paper only.
Fortunately, good tools are available to integrate the equations numerically. For this,
usually, the equations are discretized in the integral form

éa‘(f(q)nﬁrg(qw,‘-+h(q)n:)ds=0, (2)

where d2* is the boundary of an arbitrary subdomain {2~ of the computational
domain (2, and where n,, n, and n, are the x-, y- and z-components, respectively, of
the outward unit normal on 40 *. The equations represent the laws of conservation of
mass, momentum and energy, respectively.

We can divide the computational domain into a finite number of virtual cells (finite
volumes) and then require that the integral form of Eq. (1a) is satistied for each of these

finite volumes. Denoting the finite volumes by (2, ;,, i =0, 1,...,i,, J =0, 1, .., jou
k=0,1,...,k,,,. this leads to the following system of equations
¢ (S(a)n+g(a)n,+h(q)n)ds =0, Viijk. (3)

ig.k

So, per finite volume we have five numbers which represent the gas flow in that volume:
the values of the three velocity components and the values of density and pressure. The
five values are found by solving for each finite volume: the system of five equations
(Eq. 3.

As finite volumes, arbitrarily shaped hexahedra are considered, the structured subdi-
vision being such that - if existent - €2, , ;. 2, ;,,, and {2, ;,, are the neighboring
volumes of (2, ;,. The type of finite-volume method applied is the cell-centered one.
Following the so-called Godunov approach [11], along each cell face 42, ;,, the flux
vector is assumed to be constant and to be determined by a uniformly constant left and
right state, ¢' and ¢, only. Doing so, the flux evaluation is identical to the numerical
solution of the 1-D Riemann problem for a non-isenthalpic perfect-gas flow. For this, we
apply the 3-D extension of the 2-D P-variant [12] of Osher’s approximate Riemann
solver [13]. For the left and right cell-face states, we take the first-order accurate
approximations

| |
Qi+ Ljk _| ik i j+ 1tk _ | 9k ‘L!,j,k+§ | ik (4)
R Givrjn) \qljiis Dijer k) 4l ass Gija+1]
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At a later stage, these approximations can be replaced by higher-

: order accurate ones, in
which case also limiters can be introduced.

3. Sparse-grid methods

In summary, by discretizing the flow problems, we create a set of - say - N¢ finite
volumes (2, ;,. N¢ gas states g, ;, and N* nonlinear equations of the form (3). As
mentioned in the introduction, N 4 may be very large, particularly in 3-D (d = 3). All
methods to solve such large systems of equations are iterative: a guessed initial solution
is improved step-by-step during the solution process. As also mentioned in the introduc-
tion, most iterative methods have the drawback that the rate of convergence to the final
numerical solution decreases with increasing N. The reason is that for larger systems of
equations, not only the number of equations increases, but - mostly - also the effect of
the separate iterations (solution corrections) decreases. Multigrid methods are capable of
alleviating this problem; they can accelerate the iteration processes. How this is done
can be briefly explained in the following way. Suppose we want to solve a 3-D flow
problem on a grid with 128> finite volumes (i.e., in the present case, a system of
5% 128* unknowns). To solve this system of equations, we invoke the help of a
corresponding, twice-coarser grid with 64° finite volumes. Given the initial guess of the
flow solution on the 128-grid, one can start the iteration by substituting this guess into
(3). Then, in each finite volume one gets five defect values (one value for the mass
defect, three values for the momentum defect and one for the energy defect). By solving
the (eight times cheaper) coarse-grid flow problem, extended with righthand sides
obtained by proper summation of local fine-grid defect values, one finds a correction to
the fine-grid solution. Because it comes from the coarse grid, this correction cannot
completely remove the fine-grid solution error, but it can remove the important {ow
Fourier-frequency parts of the fine-grid solution error. The remaining, bigh Fouper—
frequency parts can - in principle - be removed by an appropriate smoothing algorithm
(the smoother). One may now argue that since the 64> problem is still large., thf: above
two-grid algorithm is still expensive. This can be fixed by .also c}onsndermg the
corresponding 32°-problem and, if desired, also the corresppndmg 16 -problcrm, etc.
Doing so, one applies a multigrid algorithm. On each of the dlffgrent coarser grids, one
effectively reduces a different part of the spectrum of the ﬁqe-gnd solutlor_l ermor.

The multigrid method outlined above is a standard muIand metbod, ie, in going
from a fine grid to the next coarser grid, the number of cells is hal.ved in each coordinate
direction, which leads to the strong reduction in the number of grid .pomts by a factor 8
per coarsening. A significant difficulty now with standard rflultignd methqu for 3-D
problems, compared to 2-D problems, is that in 3-D, the rqulrerpentg to be 1.m;.>osed on
the smoother are much more severe. In 3-D, standard coarsening implies rgsmctlon from
each set of 2 X 2 X2 cells to a single cell only. Becau§e the set of eight cellsdcaxcx1
support more high-frequency errors than the two-dimensional 2 X 2-set, 3-D standar

iorid i i ts on the smoother than 2-D standard multigrid.
multigrid imposes stronger requirements or . Jipations of 2D
Standard multigrid may not perform satisfactorily f<')r 3.-D gener lzda' Serivine a
problems, for which it does perform well. A fix to this might be fc;qn ‘ (;n eé]lod %h :
more powerful smoother, keeping the other components of the multigrid me
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a. Full coarsening.  b. Multiple semi-coarsening.
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Fig. 2. Two types of 3-D coarsenings.

same. A more natural remedy is not to apply standard, i.e., full coarsening, but to use
multiple semi-coarsening instead. Fig. 2a and b show standard coarsening and multiple
semi-coarsening, respectively.

3.1. Standard multigrid

In this section we first describe in more detail the standard 3-D multigrid algorithm.
We use the 3-D generalization of the optimal 2-D multigrid approach that was originally
described in Ref. [12].

As the smoothing technique for the first-order discretized Euler equations, we prefer
to apply collective symmetric point Gauss—Seidel relaxation. Point refers to the
property that during the update of the local state vector ¢; ;. all other state vectors are
kept fixed. Collective refers to the property that the update of g; ;, is done for all of its
five components simultaneously. Further, symmetric means that after a relaxation sweep
(i.e., an update of all state vectors g, ;) in one direction, a new sweep in the reverse
direction is made. The four different symmetric relaxation sweeps that are possible on a
regular 3-D grid, are performed alternatingly. At each volume visited during a relaxation
sweep, the system of five nonlinear equations is approximately solved by (exact)
Newton iteration. This relaxation method is simple and robust.

As the standard multigrid method we apply the nonlinear version (the so-called full
approximation scheme [3], abbreviated as FAS), preceded by nested iteration (also called
full multigrid [3], which is abbreviated as FMG). For this we construct a nested set of
grids such that each finite volume on a coarse grid is the union of 2 X 2 X 2 volumes on
the next finer grid (full coarsening, Fig. 2a). Let 2, Q,,..., £, be the sequence of
such nested grids with (2, the coarsest and 2, the finest grid. then nested iteration
is applied to obtain a good initial solution on’ (2 .» Whereas nonlinear multigrid is
applied to converge to the solution on the finest gnd gy, The first iterand for the
nonlinear multigrid cycling is the solution obtained by nested iteration. We proceed to
discuss both stages in more detail.

The nested iteration starts with a user-defined initial estimate for ¢,, the solution on
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the coarsest grid. To obtain an initial solution on a finer grid ), ., . first the solution on
the coarser grid (2, is improved by a single nonlinear multigrid cycle. Hereafter, this
solution is prolongated to the finer grid (2, . These steps are repeated until the highest
level (finest grid) has been reached.

Let Ny(g,) =0 denote the nonlinear system of first-order discretized equations on
{,, then a single nonlinear multigrid cycle is recurrently defined by the following steps:
1. Improve on (2, the latest obtained solution g, by applying n,. relaxation sweeps.
2. Compute on the next coarser grid {2,_, the right-hand side r,_, =N,_ (¢,-,) —

127 'N(g,),where I}~ is a restriction operator for right-hand sides.

Approximate the solution of N,_,(¢,_,) =r,_, by applying ng,s nonlinear multi-
grid cycles. Denote the approximation obtained as g, _,.

4. Correct the current solution by: q)‘==q)‘+1~,{‘_, (g,-1 —4q,-,), where IXA‘iiS a

prolongation operator for solutions.

5. Improve again g, by applying n,,, relaxations.

Steps (2), (3) and (4) form the coarse-grid correction (all three are skipped on the
coarsest grid). The efficiency of a coarse-grid correction depends in general on the
coarseness of the coarsest grid. The restriction operator /}~' and the prolongation

operator [} | are defined in Ref. [7].

3.

3.2. Multiple semi-coarsened multigrid

In the case of the semi-coarsened multigrid method we also use FAS as the basic
multigrid algorithm, and on each grid we apply collective symmetric point Gauss—Seidel
relaxation as the smoothing technique. In the semi-coarsened multigrid method, how-
ever, we replace the sequentially ordered set of grids 0, A=01,....4,,. by a
partially ordered set of grids 2, ., [=0L....01 m= 0,1,...,1y,, n=
0,1,... 0y With g, the coarsest and &2, ., - the finest grid. No.w, the leyel
of grid {2,,, , is defined as the sum [+ m+ n. The nesting and the semi-coarsening
relation between these grids is described in Refs. [14,15]. )

Also here, nested iteration is applied to obtain a good initial solution on the tmgst
grid. We proceed to discuss the present nested iteration and nonlinear multi.grid iteration
in more detail. The nested iteration starts with a user-defined initial estimate on the
coarsest grid £2,,,, i.e., at level 0 (=0+0+0). The estimate is improvgd by
relaxation. The apb}oximate solution ¢q, is prolongated (level-by-level) to .all grids up
to and including level 3 (i.e., to all grids {2, ,, , for which [+ m+n=3, w1tl} I < {max,
m=<m_, and n<n,,). The 3-D prolongation is according to formula (29) in Ref. [4]
(see Appendix A in Ref. [7] for the implementation in the present 3—D Euler context).
Next, the solution g, , is improved by 2 single- nonlinear Fnultxgnd cycle gnd
prolongated to all grids up to and including level 6 (i.e., to a.ll gr.xd.s Qi wtor which
I+m+n=6, with [ <[, m<mg, and n< Rpay)- FOT 31mph_clty, we assume tha(_ti
Lax = Mmax = Max- Then, the above process can be repeated in a straightforwar

to and including level 3/ -
main:nugpl)e nonlinear mulft%igrid cycinéxat level | +m+ n is recurrently defined by the
following steps. )
1. Improgve tll:l)e solutions at level [+ m + n by applying 7, relaxation sweep.s.ht_hand
2. Compute on all grids at the next coarser level, (14 m+n)— 1 the same rig
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sides as in the standard multigrid method, but use another restriction operation, viz.,

the one described in Appendix B of Ref. [7]. (The restriction of defects is still natural,

i.e., by summation over all sub-cells.)

3. Approximate the solutions at the coarser level (/ +m + n) — 1 by applying a single
nonlinear multigrid cycle at level (I + m + n) — L.

4. Correct the current solutions at level [+ m + n by one of two alternative correction
prolongations. One prolongation can be seen as an extension to 3-D and to systems of
equations, of the prolongation due to Naik and Van Rosendale [16]. (It uses
prolongation weights that are proportional to the absolute values of the restricted
defect components.) The other correction prolongation is the one proposed in Ref.
[4]. (It is the correction—prolongation version of the solution prolongation described
in Appendix A of Ref. [7], using fixed prolongation weights.) In Appendix C of Ref.
[7], both correction prolongations are described explicitly.

5. Improve the solutions at level [+ m + n by applying 7, relaxation sweeps.

When multiple semi-coarsening is applied to solve a system of equations defined on
the single, finest grid 2, and when all coarser grids {2, ,, ,. level =[+m +n
<ax T Mooy T Pax contnf)nute to the solution process, we speak of full-grid-of-grids
semi-coarsening. A disadvantage of full-grid-of-grids semi-coarsening is that many grid
cells are needed in total. With N® the total number of cells on the finest grid

e 1 3-D, asymptotically standard multigrid uses 3N* grid cells versus 8 N?
cefls for the full- -grid-of-grids approach. An efficiency improvement can be achieved by
thinning out the grid-of-grids, i.e., by deleting fine grids. Then, if no finest grid is
available any more, accurate approximations can be constructed by extrapolation
[4,17,18]. Most ambitious in this respect is the sparse-grid-of-grids approach, where only
grids {2, ,, ., level </, contribute. With the full grid-of-grids depicted as a cube in
Fig. 3a, the corresponding sparse grid-of-grids is the subset given in Fig. 3b. The
reduction in the numbers of grid cells is enormous. The computational complexity of the
sparse-grid-of-grids approach is O(Nlog?N), i.e., almost the complexity of a 1-D
problem only! Theoretically, the sparse-grid-of-grids approach has the best ratio of
discrete accuracy over number of grid points used [5]. In the ideal case, the full
grid-of-grids should be completely replaced by a sparse grid-of-grids. In practice,
although very fast, the accuracy of the sparse-grid approximations is slightly disappoint-
ing. It appears that more accurate approximations are obtained rot by only increasing
the number of levels, but also by dropping the cells with extreme aspect ratios. This
leads to the compromise of the semi-sparse grid-of-grids [17]. This uses the family of
grids 02,,, ., level <21, , max(l,mn) <1, (see Fig. 3¢), which (asymptotically) still
has a computational complexity which is much smaller than that of the single-grid
approach, viz., O(N?log?N), i.e., still almost the complexity of a 2-D problem only.

4. The 3-D CFD Fortran code

It is our experience that a parallel implementation is enhanced if first a sequential
prototype is made available. In this way of working we can fully concentrate on the
algorithmic aspects of our application and do not need to be occupied with all the ins
and outs of parallel programming tools. For the present 3-D CFD algorithm, it becomes



K. Everaars, B. Koren / Parallel Computing 24 (1998) 1081-1106 1089

quic'kly-clear which parts can run in parallel. The 3-D CFD code we consider in this
§ectlon is sequential and is based on a data structure which is especially designed for the
implementation of adaptive sparse-grid algorithms in three dimensions [15]. The full
Fortran program consists of a data definition section, a main program and some 200
subroutines with a total length of some 8000 lines. In the following we give a small, but
relevant part of the Fortran code, viz., a schematized version of the main program, the
subroutine fas (Full Approximation Storage algorithm, also known as nonlinear
multigrid algorithm, see Ref. [3], p. 171 and on) and the subroutine scanlv (a
subroutine for performing a user-defined operation on all grids at some multigrid level).
With this small part of the Fortran code we can explain the essential implementation

aspects of the sparse-grid method, as well as the actual restructuring of it into a parallel
application.

é program oneramé

3 include ‘basis3.i’

4 integer level, levelmax,

5 * nmin,mmin, lmin, nmax, mmax, lmax

6 logical convergence

7 external fas, prolsolgr, scanlv

g common /gridset/ nmin,mmin, lmin, nmax, mmax, lmax

10 cccecececceccececccecceecccee cce CCCCCCCCCcececeeec ccecee
1l ¢ main program

lg CCCCCCCeeeCcCCCeCeCCCeCecCeCtcCCCettCtCeCCCCCeEttCCCCCTCCCCtCCCCCeCCeaee
1

14 ¢  smrc—ccsccrccacrscacmcmncecammce i cmcracssmecee———————

%g c begin nested iteration

17 do 20 level= 0, lmax

18

B T it e L]
20 ¢ begin nonlinear multigrid iteration from all grids at

21 ¢ actual finest level

22

23 10 call fas (level)

24

25 if (convergence) then

26 continue

27 else

28 goto 10

29 endif

30

31 ¢ end nonlinear multigrid iteration from all grids at

32 ¢ actual finest level

33 € 2 e e eSS o me s e
34

35 € me e e e e e LS ms e es o ees oo
36 ¢ begin solution prolongations from all grids at

37 ¢ actual finest level

38

39 if (level.lt.lmax) then .

40 call scanlv (level+l,nmin,nmax,mmin,mmax,lmin, lmax,

41 + prolsolgr)

42 endif

43 )

44 ¢ end solution prolongations from all grids at

45 ¢ actual finest level

46 ¢ memmemmee—eeeo-- Rl bbb llolebtaitbaiat bl
47

48 20 continue

49

50 ¢ end nested iteration

B1 € = memmmememm e e e e e eSS oo SSSSSmSSoSmoSoSoomEomTmoSmETmommT
52

83 € mmemmmeemmoososmomesesoes - SmmsomosmmsssSooomsosooosomososessoos
54 ¢ begin solution prolongation to finest level

55

56 do 30 level= lmax+l,levelmax . .

57 call scanlv (level,nmin,nmax,mmin,mmax, lmin, 1lmax,prolsolgr)

58 30 continue

gg c end solution prolongation to finest level _
61 © mmmmmmemmmmmmmmmmmmmmmo—mm—C o oSmSSSoomSSSSSSooSoSmommoTmoTTmTmT
62

63 end
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subroutine fas (level)

integer level, ilevel,
+ nmin, mmin, lmin, nmax, mmax, lmax

logical origrhs,plus

external copyrhsgr, copysolgr, pointgsgr, prolcorgr,
+ restrictgr, rhsgr, scanlv

common /residu/ origrhs,plus

common /gridset/ nmin,mmin,lmin,nmax, mmax, lmax

external copyrhsgr, copysolgr, pointgsgr, prolcorgr,
+ restrictgr, rhsgr, scanlv

CCCTCCECCCCCCCCECeCeCCeCeCCCCCCCeCECCCCCCCCCCCCCCCCCECCCECCCCCCCTCCCCece
c subroutine for nonlinear multigrid iteration
CCCCCCCCCCeCCeCCeceeeeCCeecCreeCeceECeCCCCCCCCCCCCeCCCCCCCCCeCCeCCCececce

ilevel= level

c pre-relaxations
10 call scanlv (ilevel,nmin,nmax,mmin,mmax,lmin, lmax,pointgsgr)

if (ilevel.eqg.0) then
goto 20
endif

c computation of defects
call scanlv (ilevel,nmin,nmax,mmin,mmax, lmin, lmax, copyrhsgxr)
origrhs= .false.
plus= .false.
call scanlv (ilevel,nmin, nmax,mmin,mmax, lmin, lmax, rhsgr)

c computation of coarse-grid righthand sides
call scanlv (ilevel-1,nmin,nmax,mmin,mmax,lmin, lmax,restrictgr)
origrhs= .true.
plus= .true.
call scanlv (ilevel-1,nmin,nmax,mmin,mmax,lmin, lmax,rhsgr)

c back-up of coarse-grid solutions
call scanlv (ilevel-1,nmin,nmax,mmin,mmax,lmin, lmax,copysolgr)

ilevel= ilevel-1l
goto 10

[ post-relaxations
20 call scanlv (ilevel,nmin,nmax,mmin,mmax,lmin, lmax,pointgsgr)

if (ilevel.eq.level) then
goto 40

else
goto 30

endif

c prolongation of corrections
30 call scanlv (ilevel+l,nmin,nmax,mmin,mmax,lmin, lmax, prolcorgr)

ilevel= ilevel+l
goto 20

40 return
end

subroutine scanlv (lev,nmin, nmax,mmin,mmax, lmin, lmax, tkgrid)

integer lev,nmin, nmax,mmin, mmax, lmin, lmax,n,m, 1
external tkgrid

[efelofelolololelofelelelslolollololeolololololTelofolololelelelellul elololotul ool elolalul ol ol efolel Tl ool el Tt el Tolel T o2 oo ol et o}
c subroutine for performing the user-defined operation tkgrid on

c all grids at multigrid level lev
CCCCCCCCCCCCCCCCCCCCCCCCCeCCCECCCeCCCCCECaCCCCCCCCCCaCetCcccCcCeacccecee

do 20 n= nmin, nmax
do 10 m= mmin, mmax
1= lev-m-n
if ((l.le.lmax).and.(l.ge.lmin)) then
call tkgrid (n,m,1)
endif
10 continue
20 continue

return
end
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Fig. 3. Cubic, full grid-of-grids and the corresponding sparse and semi-sparse grid-of-grids.

In the pre- and post-relaxations (lines 20 and 45, respectively, in subroutine fas), the
subroutine scanlv visits all the grids (2, , at level [+ m+n and calls there the
subroutine pointgsgr (which is the actual parameter of tkgrid on line 15 in
subroutine scanlv). pointgsgr carries out a point Gauss—Seidel relaxation on all
cells of grid (2, = and because the subroutine pointgsgr only reads and writes data
concerning its own grid, the relaxations can in principle be done in parallel for all the
grids to be visited at a certain grid level. Given the fact that almost all computing time
consumed by the full program, is used in the relaxations, parallel implementation is
expected to pay off. This will be worked out in Section 5.

5. Restructuring the 3-D CFD code

In this section we describe the restructuring of the Fortran code, as presented in
Section 4, into a parallel application. For the parallelization we use MANIFOLD. MANI-
FOLD is a coordination language for managing complex, dynamically changing intercon-
nections among sets of independent, concurrent, cooperating processes [9]. MaNIFOLD is
based on the IWIM model of communication [10]. The basic concepts in the IWIM
model are processes, events, ports and channels.

The crux of our restructuring is to allow the computations done in pointgsgr on
every single grid visited with scanlv, to be carried out in separate processes. These
processes can then run in parallel in MANIFOLD, as separate threads executed by different
processors on a multi-processor hardware (e.g., a multi-processor SGI machine).

Separating this computation into a number of concurrent processes means that the
information contained in the global data structures used in the pointgsgr subroutine
must be supplied to each, and the results produced by each process must be collected.
The obvious way to accomplish this is to arrange for the MANIFOLD coordinators to send
and receive the (proper segments of the) global space through streams. This scheme is
both easy to understand and easy to implement. However, at least in the special case of
our application, it suffers from the burden of unnecessary communication overhead.
Observe that several racnzgsgs subroutine calls running as difft.zrent MANIFOLD
processes can run as threads (light-weight processes) in the same operating-system-level
(heavy-weight) process, and thus can share the same global space. Thus, they do not
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need to receive their own individual copies of the space. This reduces the number of
copies of the global space from one per MANIFOLD process to one per MANIFOLD task
(where a MANIFOLD task is an operating-system-level process that runs somewhere on a
parallel platform, and contains several MANIFOLD processes, each running as a separate
thread).

For simplicity, in the restructuring presented in this paper we assume there is only
one MANIFOLD task which contains several MANIFOLD processes. The restructured
program we present here is thus not suitable for distributed memory computing. The
additional book-keeping and extra communication necessary to run this example on a
distributed platform is beyond the scope of this paper. Note that the restructured
program we present here, nevertheless, does improve the performance of the application
on a parallel platform (Section 6). For instance, in our configuration of MANIFOLD on a
multi-processor SGI machine, some 30 threads in the same task can run pointgsgr
concurrently, each on a different grid. With » the number of processors on the machine,
at most n of these threads can run in parallel with each other.

5.1. The master / worker protocol

The restructuring of the Fortran code can be described in a kind of master /worker
protocol. In a coordinator process (which is an instance of a protocol manifold named
ProtocolMi) we create and activate a master process (named oneramé6) that
embodies the computations of the main program of the sequential version. When we
arrive in master oneramé at a pre- or post-relaxation, the master delegates the
computations done in pointgsgr to a separate worker process, for each single grid
visited. Each time the master needs a worker, it raises an event to signal the coordinator
to create the worker. In this way a pool of workers is working for the master, each
worker performing the computations embodied in pointgsgr. The coordinator makes
the identification of the worker known to the master oneramé by sending a reference of
it to the master. With this information the master can activate the worker. Before the
worker can really work, it must know on which grid (identified by the grid-of-grid
coordinates n, m, ) it must perform the relaxation. The master has these coordinates
available and writes them on its own output port. The coordinator takes care that the
worker can read this information from its input port by setting up a stream between the
output port of the master and its own input port. The master process continues its work
and again requests the creation of another worker process. When all the workers are
created and activated in this way, the master waits until the workers are done with the
relaxation and are ready to die. After this rendezvous, the master oneramé proceeds
with its sequential work until it again arrives at a point where it needs a pool of workers
to delegate the relaxations to.

5.2. The manifold code of the protocol and its parameters
In MANIFOLD, we can easily realize the master /worker protocol described in Section

5.1 in a general way where the master and worker are parameters of the protocol. In this
protocol we only describe how instances of the master and worker process definitions
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should communicate with each other. For the protocol it is irrelevant to know what kind
of computations are performed in the master and worker. What is indeed important for
the protocol is that the in/output and the event behavior of the master and worker
comply with the protocol. E.g., the protocol manifold can create a worker only when the
master requests for its creation by raising an event. Also, the master should write the
data needed by the worker, on its own output port and the worker should read this
information from its own input port, etc.

Below we give the MANIFOLD source code of the master /worker protocol and a
stepwise description of the behavior interface of the master and worker manifold.

1 // protocolMS.m
3 #define IDLE terminated(void)

5 export manifold ProtocolMS(manifold Master, manifold Worker,
event create_worker, event ready)

auto process master is Master.

L3N]

9 begin: {(master, IDLE).

11 create_worker: {
12 process worker is Worker.

14 begin: (&worker -> master -> worker, IDLE).
}.

17 ready: halt.

The behavior interface of the master is as follows:
1. Perform some sequential work (optional).
2. Perform some work in parallel by creating a pool of workers and charge each with a
computational job. Do this as follows:
(a) Request a coordinator process (which is an instance of the protocol manifold
ProtocolMW) to create a worker process by raising an event.
(b) Wait, if necessary, for the availability of a unit (sent by the coordinator through
the input port), which contains the identification (reference) of a worker process.
(c) Now the master knows the identification of the worker, it can activate the
worker.
(d) Write the information, which the worker needs to do its job, on the output port.
(The coordinator takes care that the worker can read this information.)
(e) Repeat steps a, b, ¢ and d for each worker that is needed. (In this way a pool of
workers is created.)
(f) Wait until all workers in the pool are ready to die (rendezvous).
3. Repeat 1 and 2 as many times as needed and raise an event to signal the coordinator
process that the master is ready.
The behavior interface of the worker is as follows:
1. Read the information you need to know to do your job, from your own input port.
2. Do a computational job.
We now describe the MANIFOLD code of our protocol.
The text on line 1, starting with // and denoting the name of the MANIFOLD source
file, is a comment and is ignored by the MANIFOLD compiler.
Line 3 defines a pre-processor macro, in the same syntax as that of the C pre-processor.
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Line 5 defines a manifold named ProtocolMw, which takes four arguments and
states (through the keyword expoxrt) that this manifold can be used in other source
files which import this MANIFOLD definition (as we will see later).

The first two arguments of ProtocolMw are the master and the worker manifolds,
respectively. With these two parameters, ProtocolMW is independent of a particular
master or worker, as long as they abide by the behavior interface described above. The
third argument, with formal name create_worker, is an event the master raises to
signal the ProtocolMW to create a worker. The fourth argument is an event, with
formal name ready, which the master manifold raises to signal the ProtocolMw that
it has completed its work.

Line 7 defines a process instance of the formal manifold argument Master, calls it
master, and states (through the keyword auto) that this process instance is to be
automatically activated upon creation, and deactivated upon departure from the scope in
which it is defined. In this case the scope is defined by the {" and ‘}* on lines 6 and 18,
respectively.

The body of the manifold ProtocolMW is a block, i.e., the lines of code in between
(> and *}’, containing at least one begin state. The present block has three states: the
begin, create_worker and ready states (lines 9, 11 and 17). Activation of an
instance of ProtocolMw automatically posts an occurrence of the special event begin
in the event memory of that process instance. This makes the initial transition to the
begin state possible.

In the body of the begin state (i.e., everything after the colon on line 9) we make
the state sensitive for events from the master by taking the master up in the state body
and we wait for the termination of the special pre-defined process void. In the
MANIFOLD language we express this by terminated (void) as can be seen from the
meaning (line 3) of the IDLE macro (line 14). Because the special process void never
terminates, this effectively causes the ProtocolMW instance to hang in the begin
state until it detects an event in its event memory for which it has a state. Such an event
will come soon, because an instance of master is expected to raise the event create_
worker as soon as it wants a worker to delegate some work to. This event pre-empts
the begin state and makes a state transition possible: the instance of ProtocolMw
enters its second state - the create_workexr state (lines 11-15). In this state we
create a process named worker, which is an instance of the manifold Worker. Explicit
creation of a process instance within a manifold is always done in the beginning of a
block; in this case the block is formed by the braces on the lines 11 and 15, and the
process creation takes place on line 12.

In the begin state of this block the stream configuration on line 14 is constructed
and we wait for events (due to the word IDLE) from the master (create_worker and
ready are possible events). In the stream configuration we see that the process
identification of the worker (denoted by &worker) is sent through a stream (the first
— on line 14) to the already active master, which sends the information the worker
needs to do its job, through a stream (the second — on line 14) to the worker. When
the master needs another worker, it again raises the create_worker event; this
pre-empts the create_worker state and causes a state transition to the create_
worker state. In this way, all workers are created and activated. Note that Proto-
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colMW knows nothing about the work pools in which the workers are housed. This is
f:ompletely determined in the master (see points 2e and 2f in the master’s behavior
interface).

Finally, when the master has completed its work, it raises the ready event. This
causes a state transition to the ready state on line 17, in which the primitive action
halt effectively terminates the ProtocolMW instance.

5.3. A ‘protocol’ library

It is good practice to compile manifolds that embody general applicable coordinators
(such as our ProtocolMw) separately and to archive them in what we can call a
‘protocol’ library. If we want to use, e.g., ProtocolMW we retrieve it from this library
and use as its actual parameters a pair of user-supplied master and worker manifolds that
behave according to the prescribed behavior, as documented in the reference manual of
such a ‘protocol’ library. Such a pre-compiled library forms a powerful tool for the
computing community.

The notion of a ‘protocol’ library can only exist when there is clear separation
between computation modules (the master and the worker manifolds) and coordination
modules (ProtocolMw). MANIFOLD, as a pure coordination language that encourages
this separation of computation and communication concerns, is a perfect language for
implementing such ‘protocol’ libraries [19,20].

Note that this way of working with a ‘protocol’ library is completely analogous to the
use of, e.g., the gsort routine of the standard C library. This routine performs a quick
sort algorithm on an array of any data type, and has a parameter which defines the
sorting order. The user is free to implement this routine as long as it abides by the
interface (behavior) prescribed by gsort. So gsort is not interested whether it is sorting
apples or oranges but only expects that the user-supplied compare function returns a
negative number if, e.g., apple A is considered to precede apple B because, e.g., it is
bigger and red.

In Section 5.4, we describe the actual parameters which we use for the formal
parameters in ProtocolMu.

5.4. The actual master and worker manifold

The master and the worker manifolds are easy to implement as atomic processes
written in C. These C functions then call the original Fortran code to do the real w?rk.
The only changes we make are in the program oneramé6 and in the subroutine
fas (Section 4). The changes are the following.

- On line 1, program oneramé is changed into subroutine oneram6..

- After line 61 (before the end statement), we add the line call raise_1it. .

. In the fas subroutine, on line 20 and line 45, we change the call to scanlv into a
call to a new function named concurrent. Apart from the last fomal paramfeter,
tkgrid, this function has the same functionality as scanlv. It will be explained
later. .
The master and worker manifolds are contained in the file model.ato.c, listed

below, where we code all the atomic processes and auxiliaries.
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1 /* model.ato.c */

s

3 #include "AP_interface.h'

4 #include “debug.h*

5

6 AP_Event cp, fin;

7

B AR AR AR AR AR AR R H R R AR R R AR R R R KRR AR A AR A
9 void w_oneramé(void)

10 (

11 int err;

12

13 extern void oneramé_(void);

14

15 ¢cp = AP_AllocateEvent(); P{cp)
16 err = AP_InitHeaderEvent(cp, "create_pointgsgr"); I{erxr)
17

1 fin = AP_AllocateEvent(); P(fin)
19 err = AP_InitHeaderEvent(fin, *finished"); Ilerr)
20

21 oneramé_();

22}

23

DY R R T T R A Ty
25 void concurrent_(int *pilevel,
int *pnmin, int *pnmax, int *pmmin, int *pmmax, int *plmin, int *plmax)
26 {
27 AP_Process p = AP_AllocateProcess();
28 int input = AP_PortIndex('input");
29 int output = AP_PortIndex("output");
30 AP_Unit u;
31 AP_Event r = AP_AllocateEvent();
32 AP_EventPatternSet eps = AP_AllocateEventPatternSet();
33 AP_Process q = AP_AllocateProcess();
34  int erxr, i;
35  intc ar(3];
36 int now = 0;
37 int ilevel = *pilevel, nmin = *pnmin, nmax = *pnmax,
38 mmin = *pmmin, mmax = *pmmax,
39 lmin = *plmin, lmax = *plmax;
40 int n, m, 1;
41 P(p)
42 I(input)
43 I({output)

48 for (n = nmin; n <= nmax; n++) {

49 for (m = mmin; m <= mmax; m++) {

50 1l =ilevel - m - n;

51 if ((1 <= lmax) && (1 >= lmin) ) (

53 err = AP_Raise(cp); I(err)

55 err = AP_PortRemoveUnit (input, &u, NULL); I(erx) P(u)
56 err = AP_DerefProcess(p, u, NULL, NULL); I(err)
57 err = AP_Activate(p); I(err)

59 ar(0] = n; ar{l] = m; ar(2] = 1;
60 u = AP_FramelIntegerArray((int *) ar, 3);
61 err = AP_PortPlaceUnit(output, u, NULL); I(err)

63 now++;

65 err = AP_EventPatternSetInsert(eps, AP_death, p); I{erxr)
66 )

87 }

68 )

70 for (i = 1; i <= now; i++)

71 err = AP _DeleteWaitEvent(eps, r, q); I(erx)
72 )

73 )

LR R L L R L R 2T
76 void raise_it_(void)

77

78 int erx;

80 err = AP_Raise(fin); I(err)
81 )

R AR T P PP T T

84 void w_pointgsgr (void)
{

86 int input = AP_PortIndex(“input");
87 int err;

88 AP_Unit u;

89 int ar(3]:

90 intn, m, 1;

91

92 extern void pointgsgr_(int* n, int* m, int* 1);

93

94 err = AP_PortRemoveUnit(input, &u, NULL); I({erxr) P(u)
95 exx = AP_FetchlntegerArray(u, ar, 3); I(erx)

96 err = AP_DeallocateUnit(u); I(err)

97 n = ar{0]; m = ar{l]; 1 = ar(2];
98  pointgsgr_(&n, &m, &1);
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The source code of the master consists of the following. We write a C function (lines
9-22) named w_oneramé (an atomic process) in which we call the Fortran subroutine
oneramé (line 21) (the former main program in the sequential version). Thus w_on-
eram6 is in fact a C wrapper around the Fortran subroutine oneramé. Note the
underscore behind oneramé on this line. Here we use the fact that on many platforms,
a Fortran subroutine X can be called from C, as a C function named X_.

To implement atomic processes we need the atomic process interface: a standard
MANIFOLD library with many C functions, which allows access to the MANIFOLD world.
All function calls in file model.ato.c starting with AP_refer to functions in this
library.

As already mentioned, the master needs two events, one to request for using a
worker, and one to signal ProtocolMW when it is ready with its work. These are the
two global events, named cp and £in, on line 6 in model .ato.c. With the AP__ calls
on lines 15 and 18, we allocate memory for these events. On lines 6 and 19 we couple
the two events to create_pointgsgr and finished, respectively. These are the
names under which the events are known outside model.ato.c.

Each time, after doing some sequential work, the Fortran routine oneramé_, called
on line 21 of file model.ato.c, arrives at a (pre- or post-) relaxation. We have
replaced the call to scanlv by a call to the new routine concurrent. In the routine
concurrent we create a pool of workers (lines 48-68) and introduce a synchroniza-
tion point by waiting until all the workers are ready to die (rendezvous). All the grids to
be visited in scanlv are specified on lines 11-13 in subroutine scanlv (Section 4).
In the master manifold, these grids are specified on the lines 48-51 in model.ato.c.
Instead of a call to pointgsgr for each grid, as is done in scanlv, the master raises
an event cp (line 53) to request ProtocolMW to create a worker, and waits (line 55)
for the availability of a unit u (sent by ProtocolMw on line 14 of file protocolMw.m)
at the input port of the master (set on line 28). This unit contains the identification of a
worker process. On line 56, we read the process identification of the worker process
from this unit and activate the worker. At that moment the first worker is in the pool and
others will follow soon, as specified in the loop structure on lines 48—68.

On line 59, the information the worker needs to know to do its job (three integer
coordinates specifying the grid to be visited) is assigned to an integer array. On line 61,
it is packed as a unit and placed at the output port (set on line 29) of the ma§ter.

Because we want a synchronization point where we wait until all workers' in the pool
are ready to die, we must count the number of workers (denoted by now, line 63) and
we add the death event (AP_death) of the worker process (p) (as an ‘event Pattem’) to
what is called an ‘event pattern set’ (eps). When the loop structure ends on lme-68, th.e
event pattern set eps contains the death events AP_death from all workers. This set is
used to create the rendezvous. o )

When a worker is ready with its work, it raises a death event which is ‘recelved by the
master. This event is not raised explicitly (there is no AP_raise call in the worker),
but is a part of the termination protocol of every manifold. ' .

With the call on line 71 the master waits, if necessary, until an event occurrence is
detected that matches one of the event patterns in the event pattern set eps. In this way,
we scan all death events from the workers (lines 70-73) and the routine concurrent
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returns. After this, the master proceeds in a sequential way until it arrives again at a pre-
or post-relaxation and the procedure is repeated. Finally, the master is done with its job,
which is signalled to protocolMw by calling the new routine raise_it (lines
76-81, recall the second change we made in oneramé). On line 80 the event £in is
raised.

The worker manifold (lines 84-99) is also implemented as a C wrapper, this time
around the Fortran subroutine pointgsgr, callable from C as pointgsgr_. On line
94 the worker waits, if necessary, for the availability of a unit through its input port (set
on line 86) that contains information about the grid to be visited (three integers). On line
95 this information is assigned to an array ar. The unit u is deallocated on line 96,
because it is not needed any more and the three integers are used as parameters for the
pointgsgr_ call, the Fortran routine from the sequential version (lines 97-98).

The I and P at the end of several lines in model . ato.c are C macros which check
the return values of the AP_calls.

It is clear that the master and worker constructed in this way fully satisfy the behavior
interface of the master/worker protocol given in Section 5.1.

5.5. The actual Manifold program

Using the manifold ProtocolMW together with the two actual parameters as
described in Section 5.4, we can construct the following small MANIFOLD program,
which finally changes our original sequential CFD application to a concurrent version.

// model.m
event create_pointgsgr, finished.
manifold w_pointgsgr atomic {internal.)}.

manifold w_oneramé atomic {internal. event create_pointgsgr, finished.}.

VoAU W R

manifold ProtocolMS(manifold Master, manifold Worker, event create_worker, event ready)
import .

L1 /*wrmtdokoe ok ok koo ko Rk Rk e Rk ek kK kR R R kR KRk Rk K R R R R KRR K Rk K/

12 manifold Main
{

14 begin: ProtocolMS(w_oneramé, w_pointgsgr, create_pointgsgr, finished).

On line 3 we declare two events, create_pointgsgr and finished. Because the
declaration of these events appears outside of any blocks in this source file, they are
global events, known in the entire source file.

Line 5 defines the worker manifold named w_pointgsgr, which takes no argu-
ments, and states (through the keyword atomic) that it is not implemented in the
ManrFoLD language, but in another programming language such as C, C**, or Fortran.
The keyword internal states that the function that constitutes the body of this
manifold is to run as a thread within an operating system level process.

The same holds for the master manifold w_oneramé (line 7). Because the events
create_pointgsgr and finished are to be exchanged between the master and the

rest of the MANIFOLD application, we also specify these two events between the brackets
on this line.
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Line 9 defines the manifold protocolMw which has four parameters: the master and
worker manifolds and the two events create _pointgsgr and finished, respec-
tively. The keyword import states that the real definition (i.e., the body)’ of this
manifold is given elsewhere, e.g., in a library (as in our case) or in another source file.

Lines 12~15 define the manifold named Main which has only one state - the begin
state. In this state a process instance of protocolMW is created and activated (this is
done implicitly, by using the manifold name protocolMw). After this, the instance of
Main (named main) terminates and the instances of protocolMw and w_oneramé
(with all the workers w_pointgsgr) run concurrently.

The object file obtained by compiling this MANIFOLD program must be linked with
the object files obtained from the Fortran code and the C code (model.ato.c), to
produce an executable file. The result of running this executable (on a single and /or

multi-processor machine) is identical to the output produced by the original sequential
Fortran code.

6. Performance analysis
6.1. Speed-up analysis

A number of experiments were conducted to obtain concrete numerical data to
measure the effective speed-up of our parallelization. All experiments were run on a
single multi-processor machine in a real contemporary computing environment, i.e., an
environment in which it cannot be guaranteed that one is the only user. In such an
environment, care should be taken in interpreting speed-up numbers. This is shown in
the following multi-user, single-machine analysis, in which we make the following
assumptions:

- the only processes which are significant with respect to the use of CPU time are
computing processes,

- all computing processes get equal time slices from the scheduler of the machine and
they totally consume their allotted time slices,

- the computational work embodied in a sequential program can be completely and
equally distributed over parallel processes.

Then, with n the number of processors in a machine (n>1), m, the number of

processes in our own application (m; > 1; m; =1 representing the sequential applica-

tion) and m, the number of processes from other users (m, > 0), we can write an

expression for the investment of CPU power p in our own application:

™ +m,>
n———, mtm>n
p=1 M Tm l )
ml’ ml +m2Si’l-

With the investment of CPU power inversely proportional to the elapsed cqmputing
times needed, from (5), expressions for various speed-up factors can be derived. As
examples, we look at two of these factors.
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Fig. 4. Distributions of speed-up factors which can be expected when running a code containing m, parallel
processes on a multi-processor machine (n> 1), instead of running the sequential version of that code on a

single processor from that machine (n=1, m, =1), both applications with m, other processes running
simultaneously.

The first speed-up factor relates the computing time of our parallel application run on
a multi-processor machine (n > 1, m, > 1), to that of the sequential version run on a
single-processor of the same machine (n =1, m, = 1), in presence of the same number
m, of other processes in both cases. We denote this speed-up factor as s, ,, :

m
n>1,m >1,m nl+m,)—, m +m,>n.
Sum = p( 1 2) _ ( -)ml +m, 1 2 (6)

=l’ -._—l’
p(n ™ ;) m(1+m,), m, +m, <n.

Note that for the multi-user (m, > 0) situation, the speed-up s, , can be much larger
than the number of processors n when m, +m, > n. Note also, that s, , is always
larger than the number of processes m; when m, + m, <n. In Fig. 4, distributions of
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Fig. 5. Distributions of speed-up factors which can be expected when running a code containing m, parallel
processes together with m, other processes (m, > 0), instead of with no other processes (m, = 0), both runs
on an n-processor machine.
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Fig. 6. Different pools of workers created during the parallel applications.
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S, are depicted for 4-, 8- and 16-processor machines, respectively. (Of course, the
speed-up factors are defined at the integer points (m,, m,) only, the iso-lines as drawn
in between these points are meant only to help in recognizing the discrete speed-up
patterns.)

The second speed-up factor to be considered relates the computing time of our
application when run on a machine with other processes running simultaneously, to that
of a run on the same machine, but with no other processes. The corresponding speed-up

factor, denoted as s, , is:

m:’

m, +m,
—, m>n
m;
n,m;,m, =0
S s—’l———l—z———l: m, +m, (7)
' p(n,my,m,>0) Y m, <nand m, +m, > n.
I, m, +m, <n.

In Fig. 5, distributions of s, are depicted for 4-, 8- and 16-processor machines,
respectively. Formula (7) may be practically relevant in comparative studies. With (7),
from elapsed times measured in an environment in which a known number of other
processes have been running simultaneously, one may approximately calculate the
corresponding times in a hypothetical single-user (m, =0) environment. With the
theoretical s, computed from (7) and with the real (elapsed) time ¢, (m,>0)
measured, we may estimate the corresponding elapsed time in a single-user (m, = 0)
environment by

I(m?.:O) =Sm3treul(m2>0)' (8)

All our experiments were conducted during quiet periods of the system (m, = 0).
Therefore, since we mostly had m; > n, in our case s, = 1 holds.

6.2. Performance results

All experiments were run on an SGI Challenge L with four 200 MHz IP19
processors, each with a MIPS R4400 processor chip as CPU and a MIPS R4010 floating
point chip for FPU. This 32-bit machine has 256 megabytes of main memory, 16
kilobytes of instruction cache, 16 kilobytes of data cache, and 4 megabytes of secondary

Table |
Work pool and worker statistics
Application Level n, () nax (n, ot
sparse 1 6 3 10

2 18 6 50

3 42 10 170
semi-sparse 2 18 3 38

4 82 7 336

6 268 12 1838
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unified instruction /data cache. This machine runs under IRIX 5.3, is on a network, and
is used as a server for computing and interactive jobs. Other SGI machines on this
network function as file servers.

Computations were done for both the sparse- and the semi-sparse-grid approach. For
the sparse-grid approach, the finest grid levels considered are: 1, 2 and 3, for the
semi-sparse-grid approach, the finest grid levels are: 2, 4 and 6.

For both approaches, the dynamic creation of workers in different work pools is
shown in Fig. 6a and b. From Fig. 6a we see that for level = 1, 6 pools of workers were
created with their corresponding synchronization points and with 1, 1, 3, 1, 1 and 3
workers on board, respectively. This makes the total number of worker processes for this
application equal to 10. For level = 2 there are 18 pools with a total of 50 workers, and
for level = 3 these numbers are 42 and 170, respectively. For both the sparse- and the
semi-sparse-grid applications, the numbers are summarized in Table 1. Here, n, denotes
the number of pools, (n,,),,, the maximum number of workers in a pool and (n,)
the total number of workers in the application. Note the enormous amount of processes
involved in the sparse-grid and the semi-sparse-grid application and the big number of
rendezvous created thereby.

The results of our performance measurements for both the sparse- and the semi-
sparse-grid approaches are summarized in Fig. 7a and b, which show the elapsed times
versus the grid level. All experiments were done during quiet periods of the system, but,
as in any real contemporary computing environment, it could not be guaranteed that we
were the only user. Furthermore, such unpredictable effects as network traffic and file
server delays, etc., could not be eliminated and are reflected in our results. To even out
such ‘random’ perturbations, we ran the two versions of the application on each of the
three levels close to each other in real time. This has been done for each version of the
application, five times on each level. The raw numbers obtained from these experiments
are shown in Table 2a and b. In computing the average times given in the table, the best

Table 2

The elapsed times (in hours:minutes:seconds)
Level  Isttime 2nd time 3rd time 4th time Sth time Average

a. Sparse

Sequential 1 11.09 11.22 11.23 11.28 13.20 11.24
2 1:35.54 1:35.87 1:36.56 1:39.82 1:41.22 1:37.42
3 9:14.00 9:14.73 9:15.53 9:16.42 9:28.44 9:15.56

Parallel 1 573 5.78 5.81 5.94 7.02 5.84
2 33.19 33.25 34.11 34.82 35.58 34.06
3 2:45.52 2:46.28 2:47.62 2:48.29 2:51.30 2:47.40

b. Semi-sparse

Sequential 2 50.07 50.26 50.47 50.55 52.20 5043
4 17:56.17 17:59.29 18:02.62 18:04.39 18:06.74 18:02.10
6 4:33:03.59  4:33:07.66  4:37:07.13  4:38:10.83  4:51:59.52  4:36:08.54
Parallel 2 26.47 26.50 27.70 27.80 28.48 27.33
4 5:42.72 5:53.15 5:59.63 6:03.39 6:12.96 5:58.72
6 1:13:34.67  1:13:54.51  1:15:04.86 1:15:12.74  1:23:22.07  1:14:44.04
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and the worst performances in each row were discarded. In Fig. 7a and b, these average
times are depicted versus the grid level. From the results, it clearly appears that the
MANIFOLD version takes good advantage of the parallelism offered by the four proces-
sors of the machine. The underlying thread facility in our implementation of MANIFOLD
on the SGI IRIX operating system allows each thread to run on any available processor.
For the sparse-grid and the semi-sparse-grid applications, the MANIFOLD-code times are
about 3.25 and 3.75 times smaller, respectively, than the sequential-code times. So, in
both cases we have obtained a nearly linear speed-up.

7. Conclusions

One of the promises of sparse-grid techniques, their good parallelization property, has
been realized for the computation of a realistic and practically relevant test case from
steady gas dynamics. The intrinsically low computational complexity of sparse- and
semi-sparse-grid methods, plus the additional gains in computing time through paral-
lelization, make both methods really appealing for very computing-intensive work. (As
far as CFD applications are concerned, here one may think of, e.g., direct numerical
simulation of turbulence or shape optimization problems.)

Our experiment of using MANIFOLD to restructure existing Fortran code (for a
standard 3-D problem from computational aerodynamics) into a parallel application,
indicates that this coordination language is well-suited for this kind of work. The highly
modular structure of the resulting application and the ability to use existing computa-
tional subroutines of the sequential Fortran program are remarkable. The atomic
manifold used in the parallel MANIFOLD version only calls C functions which are in fact
(wrappers around) Fortran subroutines of the sequential program.

The unique property of MANIFOLD which enables such high degree of modularity is
inherited from its underlying IWIM model. The core relevant concept in the TWIM
model of communication is isolation of the computational responsibilities from commu-
nication and coordination concerns, into separate, pure computation modules and pure
coordination modules. This is why the MANIFOLD modules in our example can coordi-
nate the already existing computational Fortran subroutines, without any change.

An added bonus of pure coordination modules is their re-usability: the same
MaNIFOLD modules developed for one application may be used in other parallel
applications with the same or similar cooperation protocol, regardless of the fact that the
two applications may perform different computations (the sparse-grid and semi-sparse-
grid applications use the same protocol manifold, see also Ref. [20] for this notion of
re-usability).

The performance evaluation of our test problem shows that MANIFOLD performs very
well.
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